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Charlie Bennett: So | will give a little introduction to quantum information
with this very restricted kind of quantum mechanics, just discrete Hilbert spaces,
no momenta and coordinates, nor even any harmonic oscillators, but in an effort
to connect it with what we would like to mean by “information” or a “bit.”

Now here we have where the founding of this field—the physics of
information—really took place (Fig. 1 [figures are from a slide presentation]).
I don’t know what this dog is, or what he or she has been doing in the field since,
but this is a really diverse group of people. | guess you have seen this picture
already, and | have to update it.

David Finkelstein: Number 26 on the group photo is Stan—Stan Kugell is
his name.

Charlie Bennett: Okay, so | am going to begin actually with some of the
slides | use with business types at IBM. [Laughter.] So | tell them first about that
information which we know about (Fig. 2).

You can tell | am going to make this part of something larger—you've prob-
ably figured that out already. (I actually used Micrographics Designer for this—and
that is why PowerPoint instincts do not serve right.)
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Fig. 1. MIT Endicott House “Physics and Computation” meeting, May 6-8, 1981.

So this information is part of a larger subject which is quantum information. |
use this older-looking font (Fig. 3) to indicate it's older than classical information
in the sense that the classical information in computing theory was really formal-
ized in the middle of the 20th century—it has been applied throughout physics,
chemistry, and engineering with enormous success, but until recently was not
applied directly to information processing—whereas quantum physics was for-
malized in the first third of it. But people didn't realize that it was—really what
they were studying was something about information rather than something about

Fig. 2. Information, to begin with. You'll suspect
this is part of a larger subject.
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Fig. 3. Classical and quantum information.

physics, not both information and physics. And I'll try to argue why the latter
should be true.

So information really is a very useful abstraction. It is the notion of
distinguishability abstracted away from what we are distinguishing, or from
the carrier of information (Fig. 4). The digital revolution is based on the fact
that information can be expressed in bits, and any needed transformation can
be accomplished by simple logic operations (“gates”) acting on the bits two
at a time. The fact that information is independent of its physical embodi-
ment makes possible Moore’s law. Making bits ten times smaller and cheaper
increases their usefulness, unlike making shoes or cars ten times smaller and
cheaper.

We usually take it for granted that information can be read or copied without
disturbing it. At it of course cannot travel faster than light or backwards in time.

And, that these bits and gates are fungible, which is of great practical im-
portance because it means that we can make them a thousand times smaller and
cheaper and they remain useful for their original purposes, unlike a car that's a
thousand times smaller.

Information = Distinguishability.

{Using a pencil, a piece of paper can be putinto a
various states distinguishable at a later time.)

- Information is reducible to bits (0,1)

- Information processing, to reveal implicit truths,
can be reduced to logic gates (NOT, AND )

- bits and gates are fungible, independent of
physical embodiment, making possible Moore's law

- (classical) information . o
- can be copied at will without disturbing it
- cannot travel faster than light or backward in time

Fig. 4. Characterizing properties of information.
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But information in microsopic bodies such as
photons or nuclear spins obeys quantum laws.
Such quantum information

- cannot be read or copied without disturbance.

- can connect two spacelike separated observers
by a correlation 100 strong to be explained by
crassical communication.” However, this
*entanglement” cannot be used to send a message
faster than light or backward in time.

Quantum information is reducible to qubits
i.e. two-state quantum systems such as a
photon's polarization or a spin-1/2 atom.

Quantum information processing is reducible to
one- and two-qubit gate operations.

Qubits and quantum %ates are fungible among
different quantum systems

Fig. 5. How quantum information is different from,
and similar to, classical information.

And of course people had taken for granted these residual physical properties
that you can copy it without disturbing it, and it can’t travel faster than light or
backwards in time.

But really, information is not quite like that. We know that in microscopic
bodies it obeys slightly different laws (Fig. 5). You can't always read it or copy
it without disturbing it, and we have the phenomenon of entanglement, which
is a correlation too strong to be explained by classical communication, which is
nevertheless useless for giving yourself advice in hindsight.

But there are some similarities to classical information. That s, that any trans-
formation you might want to make of a quantum state can be reduced to operations
that act on one and two qubits at a time. And the qubit is a state of a two-state
guantum system.

Gerry Sussman: Charlie?
Charlie Bennett: Yes.

Gerry Sussman: I'm trying to get the sense of this. In the second point you
have here with the bullet, it says: “However, this entanglement cannot be used to
send a message”—that’s the same as for classical.

Charlie Bennett: Yes, that's the same.
Gerry Sussman: Why is there a "however” there?

Charlie Bennett: Well, because the entanglement exhibits phenomena which
are not explainable by classical communication—

Gerry Sussman: Oh, | see.
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Charlie Bennett: —because it involves parts that are supposedly not interact-
ing anymore. So this creates enormous confusion, and you have to make this point.

Gerry Sussman: Okay. It's not a distinction.
Charlie Bennett: Yes.

Gerry Sussman: There’s no distinctions of course.
Charlie Bennett: Yes.

Gerry Sussman: Okay.

Charlie Bennett: This is a similarity.

Gerry Sussman: Yes.

Charlie Bennett: So the idea is, the program here is that all this stuff is really
mathematics rather than physics. And we ought to develop a theory of informa-
tion which generalizes the theory of distinguishability to include these quantum
properties, of course as well as using quantum mechanics for physics purposes.

Well, now a lot of this has to do with the theory of reversible computation,
which | will say a little bit more about, but one of the illustrations of that is | think
it is very important to define “bit” and “qubit.”

Well, | think you can find “bit” in the ordinary dictionaries. This qubit defi-
nition (Fig. 6) | take from the Random House Unabridged Dictionary of 2006.
[Laughter.] But is useful for people like us to think about these important concepts

Bit (< binary digit} n.
1. {math) One of the digits 0 and 1 used in binary arithmetic.
2. (information theory)

a) Any system with two reliably distinguishable states.

b} The amount of information carried by a such a system.

Qubit (< guantum bit) n.
1. (math) A ray in a 2 dimensional complex Hilbert space.
2. {quantum information theory)

a) Any quantum system capable of existing in two reliably
distinguishabie states and arbitrary superpositions of them.

b) The amount of quantum information carried by such a system.
{Random House Unabridged Dictionary 2006 edition)

Fig. 6. To see what essential about the notions of bit, and qubit, think
of how a dictionary defines “bit,” and how it might define “qubit.”
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and how we ought to define them in a way that a dictionary-maker would do.
And so | would like to solicit comments and criticisms and suggestions for—see,
they’re coming up already. Let's hear it. Yes, yes.

David Finkelstein: Well saying a “qubit” is aray is like saying an electron is a
ray. An electron might be described somehow by ray, but the ray is a mathematical
object. A qubit is a physical embodiment of information.

Charlie Bennett: No, no, this is a definition of it as a mathematical entity.
David Finkelstein: Ah.

Charlie Bennett: So | think one of the reasons for using the word—

David Finkelstein: —call a state vector of a qubit.

Charlie Bennett: Yes.

David Finkelstein: If you call this a qubit, what do you call the state vector?

Charlie Bennett: | call it a spin or something. | would call it something
physical.

David Finkelstein: A physical thing is a spin. Okay.

Charlie Bennett: So one of the justifications for having a new word like qubit
is that you want to abstract the distinguishability properties away from a two-state
quantum system—

David Finkelstein: Do you realize—
Charlie Bennett: —away from the particular system you're talking about.

David Finkelstein: —1 and 2 are in conflict. Namely, in 2 it is a quantum
system, in 1 it is a mathematical object.

Charlie Bennett: Well, no, this isn't—in a dictionary words have different
meanings in different contexts.

David Finkelstein: Okay.

Charlie Bennett: Like the word “simple” that you were using, that doesn’t
mean—I didn't even know what it meant when you first started using it. | knew |
ought to, but. . [Laughter.]

Charlie Bennett: So in other words, this is intended to be a—this is more
or less what you might find in a good dictionary. That is, this is a very—I| mean
almost not very exciting because this is just talking about one of these two digits,
and then this is a more profound idea, and actually two more profound ideas.

This is presumably a physical thing that has two distinguishable states, and
this is the abstraction of the amount of information carried by such a system, which
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is a little circular because we haven't said what information is yet. But | am trying
to do the same thing down here.

David Finkelstein: | accept that completely. Thank you.

Charlie Bennett: Well the fundamental principle of quantum mechanics is
the superposition principle (Fig. 7), which is illustrated in—well, | guess | lean
towards the idea that there is a reality and we're trying to understand what its actual
nature is. It's a sort of, | guess you would say this is a Platonic view of Nature.

So these are some typical axioms for quantum mechanics (Figs. 8 and 9)

e That for every system there is a Hilbert space of dimensionality equal to
its maximum number of reliably distinguishable states.

e Every ray in Hilbert space corresponds to a possible state.

e And spontaneous evolution is a unitary transformation.

¢ And then we have these other two things: The Hilbert space of a composite
system is a tensor product of the Hilbert spaces of its parts, which you can
probably derive that from the other axioms.

¢ And then this one, which if you believe in the Many Worlds' interpretation
you don't need at all, having to do with measurement.

Brian Hayes: Did Moses bring the footnotes along with the Tablets?

Charlie Bennett: No, no. These were added by rabbis later on. That's the way
they do these things. [Laughter.]

Charlie Bennett: And actually | think there is significant—when | talk about
this, | give another analogy to the Ten Commandments, because these are sup-
posedly the fundamental principles that everything obeys. You just look out the
window and nothing really seems to be obeying them.

Tom Toffoli: Isn’t that Moore’s Law?

SUpERposItion prInCiple

Between any two reliasly distinguishasle states
of a quantum system

(for le hor and ically potarized single photons)

there exist other Intermediate states

not rebasly distinguishasle, even m principle,
from erther original state.

{for exampfe diagonaf polarizations)

Fig. 7. The foundation of quantum mechanicsisincom-
plete distinguishability, embodied in the superposition
principle.
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Calcite crystal Detectors
st GO
horizontal photons GD

s By gmemanc Q'ED probability cos?
# polarized photons "‘ﬁ_“{_’ probability sinz 8

Non-orthogona! states like «» and,” are
in principle imperfectly distinguishable.

{Mathematically, a superposition /.4 - 3
is a weighted sum or difference, 3

and can be pictured as an - i «» always behaves somewhat
intermediate direction in space) \,\ - v ! ) )
I tke , and vice versa. Thisis the
basis of quantum cryptography.

Fig. 10. Superposition principle illustrated by photons.

Charlie Bennett: It is missing an “o0.”

So here is an illustration of the superposition principle (Fig. 10). Horizontal
and vertuical photons can be reliably distinguished, and can be used to carry one
bit each. But an intermediate state in principle itis not reliably distinguishable from
vertical and horizontal photons. In fact, a diagonal photon behaves sometimes like
a horizontal photon and sometimes like a vertical one; it mathematically behaves
like a linear combination of vertical and horizontal. Two polarized photons can be
reliably distingushed if and only if their polarization directions are at roght angles
to one another (“orthogonal”).

And this remark of processing this quantum data can be viewed as gates acting
on these qubits. The kind of gates that you need are only one- and two-bit gates.
One-bit gates are just arbitrary rotations in the two-dimensional Hilbert space.

In the two-bit gates (Fig. 11), all you really need is an exclusive OR, or as
they call it in the quantum information Controlled-NOT in which the first qubit
controls whether the second one is flipped or not. And because it is a quantum
system, if you give it a superposition of inputs, it gives you a superposition of
outputs, and this generates an entangled state.

Quantum cryptography just involves preparing and measuring qubits, but
a quantum computer allows them to interact, via quantum logic gates, to per-
form computations. The most famous 2-bit quantum gate is the Controlled-NOT,
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Any quantum data processing J— Q -
can be done by 1-and 2-qubit B -

JE i A T,
gates acting on qubits, — s

‘The 2-qubit XOR or "controlled-NOT" gate flips its
2nd input if its first input is 1, otherwise does nothing.
f1 =3 b - ‘-

{0y = e — -~ ar

A superposition of inputs gives a superposition of outputs.

- »+t g
g I i “an entangled or epr sate,
7]

Fig. 11. Quantum gates.

the quantum version of the classical Exclusive-OR or XOR gate. It can be used
to copy a vertical or horizontal qubit, but if one tries to copy a diagonal qubit,
the copying attempt fails and a new kind of quantum state results instead, a
so-calledentanglecbr Einstein—Podolsky—Rosen state of the two qubits that have
interacted.

It is probably unnecessary in this audience to explain what entanglement is
andisn't, ortry to explain it. It is a state of the whole that is not expressible in—I'm
scared of that word, actually, “not expressible”—in terms of the states of its parts.

When two systems are entangled, they have a definite relation, even though
neither has a state of its own. This is an idea actually that—in my youth around
1967 to be exact—this was an idea that was very easy to explain to people in
California: I don’t know what I think, and you don’t know what you think, but we
know that we think exactly the same thing. [Laughter.] But it's an idea that has an
exact mathematical description (Fig. 12).

So the excitement of this field comes of course from the fact that if you build
a quantum computer—that is, the computer in which the data in the intermediate
states exists in the form of qubits that can be entangled, and you use these quantum
gates on it, then some problems that appear to be very hard for classical computers,
you just make them out afNDs andNOTs, can be done much faster (Fig. 13).

Much of the interest in quantum computers stems from the fact that they could
greatly speed the solution of some hard problems, the most famous of which is the
factoring of large numbers.

Gerry Sussman: Can | object to that slide? We don’t know that the classical
theme can't be solved in polynomial time.
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an entangled state Is a state of a whole
system that I1s not expressisle in terms of
states of 1ts parts.

- 1 SN .
S An

The two photons may be said to be in a definite state of
sameness of polarization even though neither photon has
a polarization of its own.

Fig. 12. Quantum entanglement.

Charlie Bennett: | said so.
Gerry Sussman: Okay, but it says there is exponential speedup.

Charlie Bennett: Okay, you should object to the slide, not what I'm saying
about it. | said "which appear” to be harder.

Fast Quantum Computation

Classical factoring problem required 8 months on hundreds of computers

Factors
RSA 129 —_ 34905295 10847630949
FT84981 9903XOR1 I3
1143816257578888676 ‘ E 776363849338 784100
WR2ISTIWIB14661 201 0320597
021529572 1242362562
SILNIIAIINST =i e ey x
S3EVI8305971 215639 AR
FI05058989075LAT5V9 ITTALI2903 26670054
2N0ZRLTISLISH 06 [ 9RR1 90834461413
17764196 7991542307

95288833

Same Input and Output, but Quantum processing of intermediate data gives

3405295108475 (649
334

11931625 7RR8R6T6 ITT646314933§784399
423587614661 201 Q YRINSTT
021 8296721242362%62

Exponential speedup
for Factoring

615429337069352487 L
rorsoser: ssins — x
$7050RO9075 147899 3276913299326670954 "
F00TAETOSISN 9561988190834461413 Quadratic speedup
1776429679929425397
GR2WRIZI
for Search

Fig. 13. Fast quantum computation. Top: a very large classical computation was
required to factor the number RSA 129. Bottom: the same number could have been
factores in a much smaller number of steps on a quantum computer (the shading
insid the quantum computer indicates that during the computation the qubits on the
different wires are entangled, even though the final answer is not). If one attempted
to observe this intermediate data before the computation was done, the data would
be disturbed and the computation would give the wrong answer.
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Gerry Sussman: Right. Okay. It's the slide.

Charlie Bennett: Yes, yes. That's right.

Gerry Sussman: The computer should be at exponential speed.

Charlie Bennett: Yes.

Tom Toffoli: Why do you make the box, the Q box, smaller than the C box?

Charlie Bennett: Well because the duration of the computation is this extent
here (indicating). The number of bits involved in it is the height of it. So this was
really intended to be much longer.

So this is—I wanted to get into a feature of quantum information that I think
is particularly worth thinking about in connection with the question of: Is it digital
or is it analog?

What is the relation of quantum information in this limited arena, rather
well-understood arena, to the question of discrete versus continuous?

In what sense is it discrete, and in what sense is it continuous?

Thatis what | really wanted to concentrate on. And this question is very much
connected with the quantum error correction (Fig. 14).

And quantum error correction in turn is one of the main things that makes this
whole idea worth thinking about practically, because if it were not for quantum error

Quanturn data is exquisitely sensitive to decoherence, a randomization
of the quantum computer’s intemnal state caused by entangling interactions
with the quantum computer's environrment.

Fortunately, decoherence can be prevented, in principle at least,
by quantum error cotrection techniques developed
since 1995, including

Quantum Error Correcting Codes
Entanglement Distiifation
Quantum Fault-Tolerant Circuits

These techniques, combined with hardware improvements, will probably
allow practical quantum computers to be built, but not any time soon,

Fig. 14. Quantum error correction. Between 1993, when Shor di-
covered his fast quantum factoring algorithm, and 1995, quantum
computers were thought to be a fascinating theoretical idea but
wildly impractical and unlikely ever to be built. This changed when
error-correcting techniques were discovered. These techniques are
the quantum version of the discovery by von Neumann that a reli-
able classica computer could be built out of unreliable parts, if the
parts were connected together in a properly redundant fashion.
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The Simplest Quantum Error-Correcting Code
{1BM &nd Los Alamos iy 1096)

v |4
10
10}

oy——— U/ U’

10) "‘]

Encoder entangles input state with

four standard qubits. Resulting entangied
state can then withstand the corruption of
any one of its qubiis, and still allow
recovery of the exact initial state by a
decoder at the receiving end of the
channel

Fig. 15. Simple example of quantum error correction.

correction there would be very little hope of ever building a quantum computer.
And now there is some hope. So | will say, you know, that we will probably have
a quantum computer but not anytime soonA couple of years ago | promised it

to some journalist in the next millenium!

So there are—one of the main techniques of quantum error correction is the
guantum error-correcting code. And this is an illustration of the simplest one that
will correct an error in a single qubit, which has been expanded and encoded in an
entangled state of five qubits (Fig. 15).

And the performance of the error-correcting code is that if you take any of
these five qubits and do an arbitrary corruption of it, and then you undo this unitary
operation that the encoder did, the bad effects of the noise of the corruption will
be entirely syphoned off into these ancillary qubits and the original one will come
out in its original state.

And this was an idea that was not obvious to the discoverers of quantum
error-correcting codes with the first ones of Peter Shor and Andrew Stein, and they
weren’t obvious to other people because we were thinking about it in the wrong
way (Fig. 16).

It has often been said that classical error correction is based on making
multiple copies and then doing a measurement and doing majority voting. And
both of those things sounded like something that you can't do with quantum
information.

So indeed anything that you might do to this encoded and corrupted version
of the qubit, it would seem that you would be learning something about this state,
and because of the uncertainty principles essentially you can’t learn about a state
without disburting it, so if this was an unknown state it would seem like there was no
way to repair the error without finding out something which would disturb the state.
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Quantum error correction forces small analog errors either 1o
disappear or become big errors from a discrete correctable set

Encoding a qubit into an entangled state of 3 qubits
al0>+pjl> = al000>+pjlli>
A small analog single qubit rotation error on each qubit

j0> => cos00>+ sindjl>
1> => -sin6 [0> + cosB|l>
Deviated 3-qublt state
000> + 111>+
sing [ a(|001>+{010>+{100>) ~B(j110>+101>+011>) ]
+0(0%)

Error correction: coherently find whether one bit is different from
the other two in the 0,1 basis, and if so flip it. Resuit is:

a000> + 111> +O(6?)

Fig. 16. The right way to think of quantum error correction.

But this was all really very wrong thinking. And the reason it is wrong is that
here is a good example of an even simpler error-correction code that just wraps
into three bits (indicating). This is really just like the classical triple redundancy,
simplest error-correcting code.

So what we will say here is: We map a zero into three zeroes, and a one into
three ones. But an arbitrary combination of a superposition of zero and ones is not
mapped into three copies of the superposition, because that would be cloning and
you can't do it. You couldn’t make the encoder.

Instead, you map it into a linear combination, the same linear combination
of three zeroes and three ones. And that means something that you can do with a
rather simple quantum circuit like this (indicating).

You just take your original qubit coming in here, and you have two
zeroes, and you conditionally flip this one (indicating), and you conditionally
flip this one (indicating). And now whatever X, whether X is zero or one or
a linear superposition of them, that is the encoder that produces that
state.

So there is no problem making the state, and clearly it is an entangled state.
And one of the things people say about quantum errors which really is central
to the question of continuum versus discrete is to say well how can a quantum
error-correction process work?

Suppose each of my bits—this is actually a continuum quantity; it can be
anywhere, these two numbers, these two complex numbers, can vary continuously.
So suppose | introduce a very small error and | suppose this is zero, drifts off a
little bit and just rotates like that and becomes partly one, and this one rotates in
the orthogonal direction.
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So that would be something like if | was thinking of these as polarizations,
it just shifts a little bit like that. So how would | find an error like that and fix it?
Because after all, any one of these rotated states should be a possible state of my
qubit. It looks like a really hard error-correction process.

Well in fact because of this entangled encoding it is not especially hard at all.
The zero, as | say the zero suffers this damage. The one suffers that damage. And
if you work it out for the three qubit state, supposing they both—each of the three
qubits independently suffers that same rotation? Then we get something like this.
We have the original state, and then we have a linear term in this small angle. And
then we have a quadratic term.

And now what we need to do to get rid of this linear term is a kind of oblivious
error-correction. That s, | don’t want to measure these bits because if | did I'd find
out what they were. So | want to find out how they’re wrong without finding out
what they are.

So I make a quantum circuit that ascertains whether they're all three the same
without telling me whether they are zeroes or ones. And then if they're not all three
the same, it takes the one that’s different and puts it back to agree with the other
two.

Now | drew a circuit like that, or part of a circuit, to show you that it's not
exceptionally complicated. | have my three bits here, and I'm trying to find out—
in this case I'm trying to find out whether the A bit, whether they're all three the
same, or whether the A bit is different and the B and C are the same.

So what | will do here is to test whether A and B are the same. If they are
not the same, | flip this bit down here. This is one of my ancillary bits. Then | put
these back the way they were. Then | test whether A and C are the same. And if
not, | flip this.

And then | do a Toffoli gate, which says: Is A different from both B and C?
And the only way it can be different from both B and C is for it to have one value
while B and C have the other value.

And so if that is true, | remember that fact and then | undo all the calculations
that allowed me to calculate that so A, B, and C are put back exactly as they were
to start, including the error that may or may not be present in A. And these two
wires are put back into the zero state [indicating], and this (indicating) wire has
state which is zero if everything is okay, and it has a one if the A bit is wrong and
disagrees with the other two.

And so then I just flip the A bit conditionally on this wire, and | have corrected
the error without finding out what it is.

And the whole theory of quantum error-correcting codes, this is sort of a baby
example because this one will not correct phase errors, but this illustrates the idea
that if the state deviates a little bit the process of error correction is in a way like
a quantum measurement. It forces the system to decide whether there is no error,
or whether there is a big error. And if there is a big error, it corrects it.
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We cannot clone, perforce; instead, we split
Coherence to protect it from that wrong
That would destroy our valued quantum bit
And make our computation take too long.

Correct a flip and phase - that will suffice.
If in our code another error's bred,

We simply measure it, then God plays dice,
Coliapsing it to X or Y or Zed.

We start with noisy seven, nine, or five

And end with perfect one. To better spot
Those flaws we must avoid, we first must sirive
To find which ones commute and which do not.

Fig. 17. Dan Gottesmann’s quantum error correctiorVith group and eigenstate, we've learnad to fix

sonnet. Your quantum errors with our quantum tricks.

And this was such a beautiful idea that one of the discoverers of it, Dan
Gottesman, wrote a sonnet about it, which | will now display (Fig. 17). Can ev-
erybody read that? [Pause]

So the process there that | was telling about where an arbitrary continuum
error gets collapsed to one of a discrete set, all of which are correctable, is this line
in here (indicating).

And this is more or less engineering. This just says how this kind of idea
of developed in the manner of traditional fault-tolerant computation (Fig. 18),
do it all over in the quantum way and you encode the data that you're work-
ing on.

Fault tolerant computation involves more that error-correcting codes. It must
control errors that happen during the error-correction process, and the inevitable
spread of errors when bad qubits interact with good ones. Fortunately, all this can
be done, if the error rate of the individual gates and wires can be made low enough
to begin with.

You do the computational transformations, which I'm not showing here. You
have restoring circuits which take in clean qubits and suck out the noise. And they
are robust in their construction enough that they can recover even from errors that
are made during the error-correction process.

And so the theory of that—the rather complicated theory of that—has been
pretty well developed for particular error models, and will probably be developed
in concert with the kinds of errors that occur in whatever physical implementations
people pursue for quantum computers.
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Quantum Fault-Tolerant Conputation
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Fig. 18. Quantum fault-tolerant computation.

Well now just a few other things you can do with quantum information that
are difficult or impossible to do with classical information is cryptographic key
distribution (Fig. 19).

In Quantum Key Distribution, users “Alice” and “Bob” communicate by a
quantum channel (grey photons) and a classical channel (black bits). an eaves-
dropper (“Eve”) eavesdrop on all their classical messages, and can eavesdrop on
the photons as much as she dares. but of course eavesdropping on the photons
disturbs them. The dilemma means two possible outcomes. If Eve eavesdrop only
a little, Alice and Bob will be able to agree on a secret key, a supply of bits known
to them and no one else. If Eve eavesdrops too much, Alice and Bob will almost
always detect the eavesdropping and abort the protocol. Except with negligible
probability, Alice and Bob will not be tricked into agreeing on a key that is not
secret.

Quantum Cryptographic Key Distribution
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Fig. 19. Quantum key distribution.
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Other strange things you can do with quantum information

1. Schedule lunch with a busy person at much less
communication cost

When can we May 12, 2002.

meet for funch?
‘A'A O(N) bits

May 12, 2002.

Fig. 20. Scheduling lunch with a busy person.

There also exist classical method of key distribution, in which all commu-
niaction between Alice and Bob is classical, but these methods are insecure in
principle. they can all be broken by Eve with a sufficiently powerful classical
computer, and many in widespread use today could easily be broken on a quantum
computer. But, unless the laws of quantum mechanics are incorrect, quantum key
distribution cannot be broken by any amount of computing power, quantum or
classical.

Aside from the question of how you might build a quantum computer, the
guestion of what one might do with it is wide open. Quantum computers have been-
shown to be capable of many other surprising tasks than fast factoring or fast search.

Scheduling lunch with a busy person (Fig. 20), you can prove that it takes an
amount of communication equal to the smaller person’s calendar to find out a day
on which you are both free, or if there is no free day.

Gerry Sussman: The smaller calendar?

Charlie Bennett: The smaller calendar. So you have two people with calen-
dars. You're trying to do an OR of ANDs. And if you are allowed a quantum

Other strange things you can do with quantum information

1. Schedule lunch with a busy person at much less
communication cost

When can we Alice May 12, 2002,
meet for lunch?

' Oleart{N} log N) qublts

_ ey 1% 2002

Fig. 21. Quantum speedup of the lunch appointment problem.
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2. Share a classical secret between two parties in such a way that
the data can be locked up by the two parties acting separately,

but no amount of classical commurication is enough to unfock the
data. To do that one must use quantum communication, or

bring the two systems close enough together to physically

interact. (IBM group and collaborators PRA 59, 1071 ('99))

! | 1
Like two locked boxes, each with a key to the other attached by
a short chain, so they can only be opened when near each other.

Fig. 22. Sharing a classical secret.

communication, it can be reduced approximately to the square root of the amount
of communication (Fig. 21).

And then you can share classical data between two parties in such a way that
if you have classical hijackers they cannot force you to give up the data, and in
guantum communication it is necessary to recover the secret (Fig. 22).

And then there is all this quite variety of phenomena connected with quantum
channels and their capacities, and how you can enhance the capacity of the classical
channel for sending—a quantum channel for sending classical information by
giving entanglement (Fig. 23).

One promising theoretical field is entanglement-assisted communication.
Here the two parties, Alice and Bob, share entangled particles beforehand, and
one asks how the entanglement helps them perform various communication tasks,
such as sending classical messages from Alice to Bob. Entanglement doubles

3. Entanglement Enhanced Communication
Entanglement cannot itself be used to communicate. Butil increases
the amount of classical information that can be sent through quantum
channels, and allows quantum information to be sent through classical
channels.

Noisy quantum channel

Classical
Information

Much more
classical information seesssdp. ) / Same noisy quantum channel

Prior entangt
between sender
and

Fig. 23. Entanglement enhanced communication.
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Summary

Quantum Information obeys laws that subtly extend those
goveming classical information, making possible novel effects
such as quantum cryptography and quantum computation.

Quantum cryptography is feasible now over distances of tens of
km through fibers and much larger distances through free space.

Quantum computers could solve some problems (notably
factoring) exponentially faster than classical computers,

Quantum computations are exquisitely sensitive to disruption
by interaction of the computer with its environment, but this
problem can probably be overcome by recently developed
quanitum versions of classical error-correcting codes and
fault-tolerant circuits.

Strange phenomena involving quantum information are still
being discovered.

Fig. 24. Summary.

the rate at which classical information can be sent through a noiseless quan-
tum channel. If the channel is noisy, the rate can be increased by an even larger
factor.

Another thing that can be done with prior entanglement is to allow intact
qubits to be sent through a classical channel.

But I won't go on with that because that'’s really separate from the main topic
of this workshop. And this is probably a good place to stop and ask for arguments
(Fig. 24).

Thank you [Applause].

1. QUESTIONS SESSION

Tom Toffoli: | have a question that could have been asked even in the 1930s.
It's something similar to what you would discuss for quantum error correcting. In-
stead of digitizing analog information—I'm talking about classical information—
just put your stream of classical information, plus two or three streams of constants,
and then send them through gates and so on, essentially use the redundancy for
correcting directly at the analog level instead of converting to bits and then us-
ing the redundancy present at the digital level. How come something like that
hasn’t been done when digital transistors were expensive? Do you understand the
qguestion?

Charlie Bennett: Yes, | think. You're saying why isn’t a quantum error cor-
rection used for correcting classical analog data?

Gerry Sussman: Yes.
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Tom Toffoli: Or even classical analog error correction, something similar to
that, to correct classical analog data instead of doing B to A and A to B, and do
the correction only in that B?

Charlie Bennett: Well | think the reason is that the structure of classical analog
data, and the corrections of errors in it, are very different from quantum data. In
quantum data you have two things that you don’t have with classical data. One
is entanglement, and the other is this ability to force an error to collapse into a
discrete choice of whether it happened or didn’t happen.

Tom Toffoli: Okay.

Charlie Bennett: And so | think that is why it doesn’t have any direct appli-
cation to analog error correction.

Gerard 't Hooft: You're saying that in some sense a quantum computer is an
analog computer, because now we have continuous numbers to work with instead
of discretized numbers of classical bits?

Charlie Bennett: | would say almost the opposite. | would say that the proper
notion of digital data, of discrete data, is the quantum notion. And that a classical
bit is like saying that a real number is a complex number that happens to have no
imaginary part.

A classical bit is a qubit that happens to have one of two standard orthogonal
values. A classical—I'm glad you asked this question because | meant to—oh,
there it is—I mean to say, if we believe, as | certainly do, that quantum informa-
tion is a generalization of classical information that includes everything about it
that's good and more, and besides that it's more physically more realistic, | have
to say what a classical bit is and what a classical wire is, and what a classical
gate is.

I can all those things. | already said what a classical bitis. It is a quantum bit,
a qubit that has one of two standard orthogonal values.

A classical wire is a noisy quantum channel (drawing on flipchart). If | send
a zero or a one through this (indicating), and a zero here (indicating), the result
will be a copy, a classical copy, and | throw part of it away into the waste basket,
or lose it in the environment.

If this is any value other than zero or one, this becomes an entangled state.
And when | throw away part of it, it looks like a probabilistic thing has happened
to this.

So this is the definition, or is an adequate definition of a classical wire. It's a
wire that carries zeroes and ones. But if you try to send a superposition through it,
or send part of an entangled state through it, it spoils it.

And any kind of classical computer is just a quantum computer in which every
wire has been substituted by this defective kind of wire.



174 Bennett

Orto putitanotherway, a classical wire is a quantum wire with an evesdropper.
So | think really the best way to think about it is the central notion of bit is qubit,
and a classical bit is a special case. And it is discrete in the sense that it has a
discrete set of distinguishable states, but it is continuous in its amplitudes.

It is very different from an analog quantity, from a position of a compass
needle. | think the analogy that everybody makes that a spin is a little bit like
a bar magnet that can point in any direction is leading people in the wrong
direction.

James Baugh: A way to see it is that an analog signal can encode an infite
number of classical bits. A qubit can encode—

Charlie Bennett: can encode only one classical bit. And that looks bad, but
in fact it is good because it means that this error correction is a robust process,
whereas trying to correct analog errors is really hopelessly nonrobust.

James Baugh: That's right.

Charlie Bennett: Oh, this is a big spin. Well, let’s see. If | know as much as
I think | know about how cathode-ray tubes work, if | hold this up to the screen it
should make these things move around a little bit. [Laughter.]

Voice: Try holding it up to your disk drive. [Laughter.]

Charlie Bennett: And keep it away from my credit card and my disk
card—

Ed Fredkin: And your watch.
Charlie Bennett: What does it do to a watch?

Ed Fredkin: I'm thinking of a mechanical watch; mechanical watches get
screwed up.

Charlie Bennett: Who has a mechanical watch anymore? But you're right—if
it has a fair amount of magnetic parts, they can get magnetized and will stick to
each other.

Norman Margolus: Okay, on the question of whether quantum computation
is analog computation, there is another aspect of course—I don’t know whether
or not it bothers you or not—but when you have a classical ensemble, the fact
that, with a thousand coins, any particular pattern has a very low probability,
that doesn’t seem very strange—Yyou have to get some pattern, right? But if you
have a superposition of states of spins, any individual one of which has a terri-
bly low amplitude, and yet it's the interference between them that produces the
computation, somehow those states seem more real and you're using all of them.
They somehow are all implemented in the universe, and that somehow seems
worse.
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Charlie Bennett: Oh, to me it seems better but | guess that'’s just—
Norman Margolus: But it seems more analog in that sense.

Charlie Bennett: Well actually | think quantum analog information is a good
term, if we apply it to things like the modes of an electromagnetic field and signals
which come from an infinite-dimensional Hilbert space.

Charlie Bennett: So there are quantum analog computations which actually
go over to resemble in large degree classical analog computations, because you
have two of these things that live in an infinite-dimensional Hilbert space, and
you know that in the real universe you can’'t approximate them beyond some finite
number of dimensions. And then other than that, they will either not populate those
states or they won't populate them accurately, or you won't be able to control them.

Norman Margolus: Yes. But it seems to me that in the quantum compu-
tation, when you're producing these states each of which has small amplitude,
that somehow there should be a view that those amplitudes are a function of the
apparatuses—that the informtion that you're thinking about as being in those am-
plitudes is somehow in the apparatus, and the qubits are really holding only a small
amount of information. | don’t know if there’s a view like that, but there should
be. Anyway, that's just a thought.

Gerry Sussman: What appears to be magical is that the classical error-
correction is based on dissipating the error. Dissipation is crucial.

Charlie Bennett: So it is in quantum error correction.

Gerry Sussman: Okay, but if you go back to diagram you had on the sheet,
what bit is being dissipated?

Charlie Bennett: That's a very good question.

Gerry Sussman: No, not that one. The previous one.

Charlie Bennett: The previous one. I'll tell you which one it is.
Gerry Sussman: Something has to do away.

Charlie Bennett: Yes. Exactly. Very good question. The bottom one. That's
the answer. Norman has got it. This bit tells you whether that error occurred. What
you cannot do is to make the error go away and look as if it hadn’t occurred by a
unitary process.

Gerry Sussman: Right.

Charlie Bennett: You find out whether it occurred. You correctit. And because
of the setup of this code and the kind of error it was, you can correct it without
finding out out anything about the data.
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Gerry Sussman: Sure. But after this wire comes out, mustn't it actually some-
how go to—

Charlie Bennett: You have to throw itin the trash and replace it by a fresh zero.
Gerry Sussman: Why?

Charlie Bennett: Because if you try to use this one again, it will put an error
in instead of taking it out.

Gerry Sussman: So it's got to be heat bending somewhere?
Charlie Bennett: Yes.

Gerry Sussman: Okay. Now—aokay, that's what | needed to see. Okay, thank
you.

Brian Hayes: So this is not a reversible process?

Charlie Bennett: Well, yes and no. This is one of the nice things, | mean for
somebody who has worked on reversible computing for many years. Most people
didn’t think it was except that almost all the people who thought it was interesting
are in this room [Laughter]—there’s a nice combination here. In order to keep the
thing reversible—see, if | go this far, | have already found out whether this bit is
a zero or a one. But | have now leaked a lot of extra data. | have measured some
of these things. And | don't really want to know about the other stuff.



